(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_22 (Sun Microsystems Inc.) Main-Class: FlattenTreeRec
public class FlattenTreeRec {
public static void main(String[] args) {
Random.args = args;
Tree tree = Tree.createTree();
flatten(tree);
}

public static Tree flatten(Tree start) {
if (start != null) {
if (start.left == null) {
return new Tree(start.value, null, flatten(start.right));
} else {
Tree s = start.left.left;
Tree t = start.left.right;
Tree u = start.right;
return flatten(new Tree(start.value, s, new Tree(start.left.value,t,u)));
}
} else {
return null;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


public class Tree {
Tree left;
Tree right;
Object value;

public Tree(Object v, Tree l, Tree r) {
this.value = v;
this.left = l;
this.right = r;
}

public Tree() {
}

public static Tree createNode() {
Tree result = new Tree();
result.value = new Object();
return result;
}

public static Tree createTree() {
int counter = Random.random();
if (counter == 0) {
return null;
}
Tree result = createNode();
Tree t = result;

while (counter > 0) {
int branch = Random.random();
if (branch > 0) {
if (t.left == null) {
t.left = createNode();
t = result;
} else {
t = t.left;
}
} else {
if (t.right == null) {
t.right = createNode();
t = result;
} else {
t = t.right;
}
}
counter--;
}

return result;
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
FlattenTreeRec.main([Ljava/lang/String;)V: Graph of 74 nodes with 0 SCCs.

Tree.createTree()LTree;: Graph of 419 nodes with 1 SCC.

FlattenTreeRec.flatten(LTree;)LTree;: Graph of 145 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 75 rules for P and 70 rules for R.


Combined rules. Obtained 2 rules for P and 11 rules for R.


Filtered ground terms:


2473_1_flatten_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → 2473_1_flatten_InvokeMethod(x1, x2, x5, x7)
Tree(x1, x2, x3, x4) → Tree(x2, x3, x4)
1856_0_flatten_NULL(x1, x2, x3) → 1856_0_flatten_NULL(x2, x3)
5752_0_flatten_Return(x1, x2, x3) → 5752_0_flatten_Return(x2, x3)
11224_0_flatten_Return(x1, x2, x3) → 11224_0_flatten_Return(x2, x3)
9032_0_flatten_Return(x1, x2) → 9032_0_flatten_Return(x2)
8259_0_flatten_Return(x1, x2) → 8259_0_flatten_Return(x2)
4067_0_flatten_Return(x1, x2, x3) → 4067_0_flatten_Return(x2, x3)
1925_0_flatten_Return(x1, x2) → 1925_0_flatten_Return

Filtered duplicate args:


1856_0_flatten_NULL(x1, x2) → 1856_0_flatten_NULL(x2)
4067_0_flatten_Return(x1, x2) → 4067_0_flatten_Return(x2)

Finished conversion. Obtained 2 rules for P and 11 rules for R. System has no predefined symbols.




Log for SCC 1:

Generated 257 rules for P and 74 rules for R.


Combined rules. Obtained 15 rules for P and 0 rules for R.


Filtered ground terms:


Tree(x1, x2, x3) → Tree(x2, x3)
17814_0_random_ArrayAccess(x1, x2, x3) → 17814_0_random_ArrayAccess(x2, x3)
17975_0_random_IntArithmetic(x1, x2, x3, x4) → 17975_0_random_IntArithmetic(x2, x3)
Cond_17975_1_createTree_InvokeMethod9(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod9(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod2(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod2(x1, x2, x3)

Filtered all non-integer terms:


17814_1_createTree_InvokeMethod(x1, x2, x3, x4) → 17814_1_createTree_InvokeMethod(x1, x2)
Cond_17814_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_17814_1_createTree_InvokeMethod(x1, x2, x3)
17975_1_createTree_InvokeMethod(x1, x2, x3, x4) → 17975_1_createTree_InvokeMethod(x1, x2)
17975_0_random_IntArithmetic(x1, x2) → 17975_0_random_IntArithmetic(x2)
Tree(x1, x2) → Tree
Cond_17975_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod1(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod3(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod3(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod4(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod4(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod5(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod5(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod6(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod6(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod7(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod7(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod8(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod8(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod10(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod10(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod11(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod11(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod12(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod12(x1, x2, x3)
Cond_17975_1_createTree_InvokeMethod13(x1, x2, x3, x4, x5) → Cond_17975_1_createTree_InvokeMethod13(x1, x2, x3)

Filtered all free variables:


17975_1_createTree_InvokeMethod(x1, x2) → 17975_1_createTree_InvokeMethod(x2)
Cond_17975_1_createTree_InvokeMethod(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod(x1, x3)
17814_1_createTree_InvokeMethod(x1, x2) → 17814_1_createTree_InvokeMethod(x2)
Cond_17975_1_createTree_InvokeMethod1(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod1(x1, x3)
Cond_17975_1_createTree_InvokeMethod2(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod2(x1, x3)
Cond_17975_1_createTree_InvokeMethod3(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod3(x1, x3)
Cond_17975_1_createTree_InvokeMethod4(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod4(x1, x3)
Cond_17975_1_createTree_InvokeMethod5(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod5(x1, x3)
Cond_17975_1_createTree_InvokeMethod6(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod6(x1, x3)
Cond_17975_1_createTree_InvokeMethod7(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod7(x1, x3)
Cond_17975_1_createTree_InvokeMethod8(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod8(x1, x3)
Cond_17975_1_createTree_InvokeMethod9(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod9(x1, x3)
Cond_17975_1_createTree_InvokeMethod10(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod10(x1, x3)
Cond_17975_1_createTree_InvokeMethod11(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod11(x1, x3)
Cond_17975_1_createTree_InvokeMethod12(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod12(x1, x3)
Cond_17975_1_createTree_InvokeMethod13(x1, x2, x3) → Cond_17975_1_createTree_InvokeMethod13(x1, x3)
Cond_17814_1_createTree_InvokeMethod(x1, x2, x3) → Cond_17814_1_createTree_InvokeMethod(x1, x3)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


The ITRS R consists of the following rules:
1856_0_flatten_NULL(NULL) → 1925_0_flatten_Return
5582_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))) → 8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2)))
5582_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), java.lang.Object(Tree(x4, x5, x6)), x2))) → 9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), java.lang.Object(Tree(x8, x9, x10)), x2))) → 9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5))) → 8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5)))
2473_1_flatten_InvokeMethod(1925_0_flatten_Return, java.lang.Object(Tree(NULL, NULL, x0)), x0, NULL) → 4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0)))
2473_1_flatten_InvokeMethod(4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), x1, java.lang.Object(Tree(NULL, NULL, x0))) → 5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)))
2473_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), x4, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))) → 5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2)), x4)))
2473_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), x5, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2))) → 11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x5)))
2473_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), x9, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2))) → 11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x9)))
2473_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), x8, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5))) → 5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5)), x8)))

The integer pair graph contains the following rules and edges:
(0): 1856_0_FLATTEN_NULL(java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))) → 1856_0_FLATTEN_NULL(java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])))
(1): 1856_0_FLATTEN_NULL(java.lang.Object(Tree(NULL, x0[1], x1[1]))) → 1856_0_FLATTEN_NULL(x0[1])

(0) -> (0), if ((java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])) →* java.lang.Object(Tree(java.lang.Object(Tree(x0[0]', x1[0]', x2[0]')), x3[0]', x4[0]'))))


(0) -> (1), if ((java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])) →* java.lang.Object(Tree(NULL, x0[1], x1[1]))))


(1) -> (0), if ((x0[1]* java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))))


(1) -> (1), if ((x0[1]* java.lang.Object(Tree(NULL, x0[1]', x1[1]'))))



The set Q consists of the following terms:
1856_0_flatten_NULL(NULL)
5582_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), java.lang.Object(Tree(x4, x5, x6)), x2)))
5582_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), java.lang.Object(Tree(x8, x9, x10)), x2)))
5582_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))
2473_1_flatten_InvokeMethod(1925_0_flatten_Return, java.lang.Object(Tree(NULL, NULL, x0)), x0, NULL)
2473_1_flatten_InvokeMethod(4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), x1, java.lang.Object(Tree(NULL, NULL, x0)))
2473_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), x4, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
2473_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), x5, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)))
2473_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), x9, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)))
2473_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), x8, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))

(6) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1856_0_FLATTEN_NULL(java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))) → 1856_0_FLATTEN_NULL(java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])))
1856_0_FLATTEN_NULL(java.lang.Object(Tree(NULL, x0[1], x1[1]))) → 1856_0_FLATTEN_NULL(x0[1])

The TRS R consists of the following rules:

1856_0_flatten_NULL(NULL) → 1925_0_flatten_Return
5582_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))) → 8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2)))
5582_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), java.lang.Object(Tree(x4, x5, x6)), x2))) → 9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), java.lang.Object(Tree(x8, x9, x10)), x2))) → 9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5))) → 8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5)))
2473_1_flatten_InvokeMethod(1925_0_flatten_Return, java.lang.Object(Tree(NULL, NULL, x0)), x0, NULL) → 4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0)))
2473_1_flatten_InvokeMethod(4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), x1, java.lang.Object(Tree(NULL, NULL, x0))) → 5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)))
2473_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), x4, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))) → 5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2)), x4)))
2473_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), x5, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2))) → 11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x5)))
2473_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), x9, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2))) → 11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x9)))
2473_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), x8, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5))) → 5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5)), x8)))

The set Q consists of the following terms:

1856_0_flatten_NULL(NULL)
5582_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), java.lang.Object(Tree(x4, x5, x6)), x2)))
5582_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), java.lang.Object(Tree(x8, x9, x10)), x2)))
5582_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))
2473_1_flatten_InvokeMethod(1925_0_flatten_Return, java.lang.Object(Tree(NULL, NULL, x0)), x0, NULL)
2473_1_flatten_InvokeMethod(4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), x1, java.lang.Object(Tree(NULL, NULL, x0)))
2473_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), x4, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
2473_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), x5, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)))
2473_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), x9, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)))
2473_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), x8, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1856_0_FLATTEN_NULL(java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))) → 1856_0_FLATTEN_NULL(java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])))
1856_0_FLATTEN_NULL(java.lang.Object(Tree(NULL, x0[1], x1[1]))) → 1856_0_FLATTEN_NULL(x0[1])

R is empty.
The set Q consists of the following terms:

1856_0_flatten_NULL(NULL)
5582_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), java.lang.Object(Tree(x4, x5, x6)), x2)))
5582_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), java.lang.Object(Tree(x8, x9, x10)), x2)))
5582_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))
2473_1_flatten_InvokeMethod(1925_0_flatten_Return, java.lang.Object(Tree(NULL, NULL, x0)), x0, NULL)
2473_1_flatten_InvokeMethod(4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), x1, java.lang.Object(Tree(NULL, NULL, x0)))
2473_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), x4, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
2473_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), x5, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)))
2473_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), x9, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)))
2473_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), x8, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

1856_0_flatten_NULL(NULL)
5582_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
5582_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), java.lang.Object(Tree(x4, x5, x6)), x2)))
5582_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), java.lang.Object(Tree(x8, x9, x10)), x2)))
5582_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))
2473_1_flatten_InvokeMethod(1925_0_flatten_Return, java.lang.Object(Tree(NULL, NULL, x0)), x0, NULL)
2473_1_flatten_InvokeMethod(4067_0_flatten_Return(java.lang.Object(Tree(NULL, NULL, x0))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, NULL, x0)), x1)), x1, java.lang.Object(Tree(NULL, NULL, x0)))
2473_1_flatten_InvokeMethod(5752_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x3, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)), x4)), x4, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2)))
2473_1_flatten_InvokeMethod(8259_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)), x5)), x5, java.lang.Object(Tree(java.lang.Object(Tree(NULL, x3, x1)), x4, x2)))
2473_1_flatten_InvokeMethod(9032_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x0, x1)), x2))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)), x9)), x9, java.lang.Object(Tree(java.lang.Object(Tree(java.lang.Object(Tree(x3, x4, x5)), x6, x7)), x8, x2)))
2473_1_flatten_InvokeMethod(11224_0_flatten_Return(java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, x6, x7)), x4)), x5))), java.lang.Object(Tree(NULL, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)), x8)), x8, java.lang.Object(Tree(NULL, java.lang.Object(Tree(java.lang.Object(Tree(x0, x1, x2)), x3, x4)), x5)))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1856_0_FLATTEN_NULL(java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))) → 1856_0_FLATTEN_NULL(java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])))
1856_0_FLATTEN_NULL(java.lang.Object(Tree(NULL, x0[1], x1[1]))) → 1856_0_FLATTEN_NULL(x0[1])

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

1856_0_FLATTEN_NULL(java.lang.Object(Tree(NULL, x0[1], x1[1]))) → 1856_0_FLATTEN_NULL(x0[1])
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(1856_0_FLATTEN_NULL(x1)) = 2·x1   
POL(NULL) = 0   
POL(Tree(x1, x2, x3)) = x1 + x2 + x3   
POL(java.lang.Object(x1)) = x1   

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1856_0_FLATTEN_NULL(java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))) → 1856_0_FLATTEN_NULL(java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

1856_0_FLATTEN_NULL(java.lang.Object(Tree(java.lang.Object(Tree(x0[0], x1[0], x2[0])), x3[0], x4[0]))) → 1856_0_FLATTEN_NULL(java.lang.Object(Tree(x0[0], java.lang.Object(Tree(x1[0], x3[0], x2[0])), x4[0])))


Used ordering: Polynomial interpretation [POLO]:

POL(1856_0_FLATTEN_NULL(x1)) = 2·x1   
POL(Tree(x1, x2, x3)) = 2 + 2·x1 + x2 + x3   
POL(java.lang.Object(x1)) = 2 + x1   

(15) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(17) YES

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 17814_1_CREATETREE_INVOKEMETHOD(x0[0]) → COND_17814_1_CREATETREE_INVOKEMETHOD(x0[0] > 0 && 0 < x0[0] + -1, x0[0])
(1): COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1]) → 17814_1_CREATETREE_INVOKEMETHOD(x0[1] + -1)

(0) -> (1), if ((x0[0] > 0 && 0 < x0[0] + -1* TRUE)∧(x0[0]* x0[1]))


(1) -> (0), if ((x0[1] + -1* x0[0]))



The set Q is empty.

(19) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 17814_1_CREATETREE_INVOKEMETHOD(x0) → COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0, 0), <(0, +(x0, -1))), x0) the following chains were created:
  • We consider the chain 17814_1_CREATETREE_INVOKEMETHOD(x0[0]) → COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0]), COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1]) → 17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1)) which results in the following constraint:

    (1)    (&&(>(x0[0], 0), <(0, +(x0[0], -1)))=TRUEx0[0]=x0[1]17814_1_CREATETREE_INVOKEMETHOD(x0[0])≥NonInfC∧17814_1_CREATETREE_INVOKEMETHOD(x0[0])≥COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])∧(UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE<(0, +(x0[0], -1))=TRUE17814_1_CREATETREE_INVOKEMETHOD(x0[0])≥NonInfC∧17814_1_CREATETREE_INVOKEMETHOD(x0[0])≥COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])∧(UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧[-1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥)∧[(-1)Bound*bni_10 + (4)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)







For Pair COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0) → 17814_1_CREATETREE_INVOKEMETHOD(+(x0, -1)) the following chains were created:
  • We consider the chain COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1]) → 17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1)) which results in the following constraint:

    (8)    (COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1])≥NonInfC∧COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1])≥17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))∧(UIncreasing(17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))), ≥)∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))), ≥)∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))), ≥)∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))), ≥)∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 17814_1_CREATETREE_INVOKEMETHOD(x0) → COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0, 0), <(0, +(x0, -1))), x0)
    • ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])), ≥)∧[(-1)Bound*bni_10 + (4)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)

  • COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0) → 17814_1_CREATETREE_INVOKEMETHOD(+(x0, -1))
    • ((UIncreasing(17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))), ≥)∧0 = 0∧[1 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(17814_1_CREATETREE_INVOKEMETHOD(x1)) = [2]x1   
POL(COND_17814_1_CREATETREE_INVOKEMETHOD(x1, x2)) = [-1] + [2]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

17814_1_CREATETREE_INVOKEMETHOD(x0[0]) → COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])
COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1]) → 17814_1_CREATETREE_INVOKEMETHOD(+(x0[1], -1))

The following pairs are in Pbound:

17814_1_CREATETREE_INVOKEMETHOD(x0[0]) → COND_17814_1_CREATETREE_INVOKEMETHOD(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0])

The following pairs are in P:
none

There are no usable rules.

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_17814_1_CREATETREE_INVOKEMETHOD(TRUE, x0[1]) → 17814_1_CREATETREE_INVOKEMETHOD(x0[1] + -1)


The set Q is empty.

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(22) TRUE